Recent Progress in Development of Low-Aspect-Ratio Quasi-Omnigeneous Stellarators

J.F. Lyon, S.P. Hirshman, D.A. Spong, R. Sanchez, L.A. Berry, D.B. Batchelor, A. Ware, J.C. Whitson, B.E. Nelson

Oak Ridge National Laboratory

ICC-2000 Berkeley, CA Feb. 22, 2000

QO Optimization Procedure Improves Confinement of Trapped Particles

Open drift surfaces

Closed drift surfaces

- Approximate alignment of bounce-averaged drift orbits and magnetic surfaces reduces neoclassical transport
- J* v_{||}d , approximate second adiabatic invariant; no E_r

TOPICS

- Optimization of Low-Aspect-Ratio
 Quasi-Omnigeneous (QO) Stellarators
- Low-Bootstrap-Current Configurations with Stellarator Shear
- Higher-Bootstrap-Current Configurations with Tokamak Shear

Optimization Determines Outer Flux Surface Shape. Coils to Produce This Shape Are Then "Reverse-Engineered".

Concept Optimization Process Integrates a Wide Range of Physics Criteria in ²

<u>Targets</u> (Physics/Engineering)	<u>Example</u>	
Bounce-average omnigeneity (drift surfaces and flux surfaces aligned)	$B_{min} = B_{min} ()$ $B_{max} = B_{max} ()$ $J^* = J^*()$	Transport
Trapped, passing orbits	Replace J* with J	Transport
Local diffusive transport	D, from DKES	J
Current profile	monotone increasing I() self-consistent I _{BS}	1
Limit maximum plasma current	e.g., I _{max} < 40 kAmps	> Equilibrium
lota profile	i() = 0.5 (= 0) to 0.8 (= a)	J
Magnetic Well, Mercier	V " < 0, $D_{M} > 0$ over cross section	} Stability
Ballooning stability	< > ~ 4%	
Aspect ratio	R₀/a 3 to 4	1
Limit outer surface curvature	avoid strong elongation/cusps	Geometry

<u>Control variables:</u> shape (40-50 Fourier harmonics R_{mn} , Z_{mn}) for LCFS + profile parameters

Quasi-Omnigenous Stellarators

colors indicate contours of constant |B|

Plasma Geometry Is Very Different for the Two Types of QO Configurations

Low-I_{BS}, dq/dr < 0; <u>large helical axis excursion</u>, ~ 4%

|B| Structure Is Very Different for the Two QO Stellarator Types

earlier near quasi-helical (= 2%) QO case

recent near quasi-poloidal high (= 14%) QO case

Rotational Transform Profiles Are Very Different for the Two QO Types

Features of Low-I_{BS} QO Stellarators

- Stellarator-like shear (dq/dr < 0)
 - typically (0) = 0.55-0.68, (a) = 0.74-0.87
- Bootstrap current ~1/10 current in a tokamak
 - configuration insensitive to increasing beta
 - robust against current-driven modes (external kinks), vertical instabilities, and disruptions
- Ballooning stability limit 3-4% in reactor range
 - Mercier stable across the plasma cross section
 - magnetic well and stellarator shear out to plasma edge
 - limits testable in small-medium size experiments
- More thoroughly studied up to this point
 - modular coil concept developed
 - preliminary exploration of engineering design issues

The Low-I_{BS} QO-Optimized Magnetic Field Has Several Spatial Components

- Dominant helical shaping term produces higher rotational transform
- Small axisymmetric 1/R term reduces toroidal curvature drift
- Radially varying mirror "bumpy" term produces poloidal grad-B drift

Bootstrap Current Contributes 10% of the Net Transform Based on Equilibrium Calculations

Shape Optimization Produces Higher-Configurations

- Original low-I_{BS} configuration, ballooning unstable at = 3%, was stabilized by small plasma boundary shape changes
- Pressure profile modification raises stable to 4%

Reference QOS Properties

- 3 field periods, R/<a> = 3.6; global magnetic well
- (0) = 0.56, (a) = 0.65 (monotonic)
- Good vacuum flux surfaces; little change with
- Bootstrap current < 1/10 current in similar tokamak
- Shaped plasma surface gives ballooning limit 3-4%
- Good neoclassical transport ($_{E,neo}$ 3-5 × $_{E}$ lSS95) from 3-D Monte Carlo loss rate calculation
- Confinement of ICRF-generated tails better than CHS
- 7 modular coils per period -- changing current in corner coils ±50% changes R/<a> from 2.9 to 4.6

Higher-I_{BS} QO Stellarator Features

- Tokamak-like shear (dq/dr > 0)
 - (0) 0.47 (q > 2) and (a) = 0.12 (q 8)
- Bootstrap current 1/4 that of equivalent tokamak
 - 40% of the edge transform comes from the coils
- Stable at up to 19% more attractive for reactor?
 - smoother corners lead to high ballooning beta limits
 - stable to Mercier modes and internal kinks
 - smaller j and j near edge higher external kink limit?
- Less helical axis excursion
 - simpler modular coils easier fabrication, lower cost?
- More mirror-like |B| variation on a flux surface
 - larger plasma-coil separation possible? smaller reactor
- Transport ~2x higher than best lower-I_{BS} QO case, but still ~1.6 better than ISS95 stellarator scaling

= 15% QO Configuration Has 1/4 the Bootstrap Current of Equivalent Tokamak

- QO case has self-consistent bootstrap current
- I_{BS} 4x larger in an equivalent tokamak; large opposing driven current needed for self-consistent equilibrium

The Higher-I_{BS} QO-Optimized Magnetic Field Has Different Spatial Components

- Dominant poloidally-symmetric terms >5 times larger
- Small axisymmetric 1/R term reduces toroidal curvature drift
- Helically-symmetric terms >20 times smaller

SUMMARY

- Configuration optimization tools are well developed
 - 3-D equilibrium; self-consistent bootstrap current; coil design
 - ballooning, kink, and Mercier stability
 - neoclassical transport, energetic orbit confinement
- Progress has been made in optimization of the low- I_{BS} QO approach (R/<a> = 3.6)
 - bootstrap current << current in tokamak for same size and È</p>
 - good neoclassical transport ($_{E,neo}$ 3-5 \times $_{E,ISS95}$), 0.7
 - ballooning optimization achieves 3-4%
- Work has started on a higher- QO configuration
 - ballooning stable up to
 19%; also kink stable at
 15%
 - configuration may allow simpler modular coils and smaller reactor
 - neoclassical confinement still needs to be improved

|B| Structure Is Very Different for QA and QO Stellarators

Quasi-axisymmetric QA case

|B| Contours at r/a = 0.75

recent near quasi-poloidal high (= 14%) QO case

